

SEQUENCES MASTERCLASS: EXERCISES

1. For the following sequences, find the *Recursive Relationship* and the *General Formula*.

(a) 6, 10, 14, 18, 22, 26, ...	(b) 81, 27, 9, 3, 1, $\frac{1}{3}$, ...
(c*) 5, 6, 4, 7, 3, 8, ...	(d*) 5, 6, 4, $\frac{7}{3}$, $\frac{19}{12}$, $\frac{79}{60}$, ...

2. Follow these steps:

- i. Pick a positive integer N .
- ii. Start a sequence with two integer values a and b where $a \leq b$.

$$a, \quad b$$

iii. Let the next term of the sequence be N times the second then added to the first

$$a, \quad b, \quad a + bN$$

iv. Repeat the process with the next terms until you obtain 2 numbers over $N \times 1000$.
v. Divide the last term by the term before and denote that term as δ .

- i. $N = 7$.
- ii. Pick $a = 4$ and $b = 5$, then the sequence starts as

$$4, \quad 5$$

iii. The next term in the sequence is $4 + 7 \times 5 = 39$, so the sequence is now

$$4, \quad 5, \quad 39$$

iv. The sequence is

$$4, \quad 5, \quad 39, \quad 278, \quad 1985, \quad 14173, \quad 101196$$

v.

$$\frac{101196}{14173} = 7.14\dots$$

Show that the value of δ you obtained satisfies

$$(I) \quad \delta = N + \frac{1}{\delta} \quad (II) \quad \delta = \sqrt{1 + N\sqrt{1 + N\sqrt{1 + N\sqrt{1 + \dots}}}} \quad (III) \quad \delta = N + \frac{1}{N + \frac{1}{N + \frac{1}{N + \frac{1}{N + \dots}}}}$$

3. * For some value N , show that if some number δ satisfies

$$\delta = \sqrt{1 + N\sqrt{1 + N\sqrt{1 + N\sqrt{1 + \dots}}}} \quad \text{then} \quad \delta^2 - N\delta - 1 = 0.$$

4. * For some value N , show that if some number δ satisfies

$$\delta = N + \frac{1}{N + \frac{1}{N + \frac{1}{N + \dots}}} \quad \text{then} \quad \delta^2 - N\delta - 1 = 0.$$

Answers

1. For $n = 1, 2, 3, \dots$:

(a) Recursive: $a_{n+1} = a_n + 4$, $a_1 = 6$

$$\text{General: } a_n = 6 + 4(n - 1)$$

(b) Recursive: $a_{n+1} = \frac{a_n}{3}$, $a_1 = 81$

$$\text{General: } a_n = \frac{81}{3^{n-1}}$$

(c*) Recursive: $a_{n+1} = a_n - (-1)^n n$, $a_1 = 5$

$$\text{General: } a_n = 5 + \frac{2n(-1)^n + 1 - (-1)^n}{4}$$

(d*) Recursive: $a_{n+1} = \frac{a_n + n}{n}$, $a_1 = 5$

$$\text{General: } a_n = \frac{1}{(n-1)!} \left(5 + \sum_{i=1}^{n-1} i! \right)$$